Álgebra de Conjuntos Unión e Intersección de Conjuntos { } Idempotencia $$ A=\left(A \cup A\right) \hspace{0.6 cm} | \hspace{0.6 cm} A=\left(A \cap A\right) $$ { } Conmutatividad $$ \left(A \cup B\right)=\left(B \cup A\right) \hspace{0.6 cm} | \hspace{0.6 cm} \left(A \cap B\right)=\left(B \cap A\right) $$ { } Asociatividad $$ A \cup \left(B \cup C\right)=\left(A \cup B\right) \cup C \hspace{0.6 cm} | \hspace{0.6 cm} A \cap \left(B \cap C\right)=\left(A \cap B\right) \cap C $$ { } Absorción $$ A \cup \left(A \cap B\right)=A \hspace{0.6 cm} | \hspace{0.6 cm} A\cap \left(A \cup B\right)=A $$ { } Distributividad $$ A \cup \left(B \cap C\right) = \left(A \cup B \right) \cap \left( A \cup C \right) \hspace{0.6 cm} | \hspace{0.6 cm} A \cap \left(B \cup C\right) = \left(A \cap B \right) \cup \left( A \cap C \right) $$ { } Demostración 6 $$ A \subseteq \left( A \cup B \right) ~~~ \wedge ~~~ B \subseteq \left( A \cup B \right) \hspace{0.6 cm} | \hspace{0.6 cm} \left( A \cap B \right) \subseteq A ~~~ \wedge ~~~ \left( A \cap B \right) \subseteq B $$ { } Demostración 7 $$ A \subseteq C ~~~ \longleftrightarrow ~~~ \left[ ~ A \cup \left(B \cap C\right) = \left(A \cup B \right) \cap C ~ \right] $$ { } Demostración 8 $$ A \subseteq B \hspace{0.6 cm} \longleftrightarrow \hspace{0.6 cm} \left[ ~ A = \left( A \cap B \right) ~~~ \wedge ~~~ B = \left( A \cup B \right) ~ \right] $$ { } Demostración 9 $$ A \subseteq \left(B \cap C \right) \hspace{0.6 cm} \rightleftarrows \hspace{0.6 cm} \left[ ~ A \subseteq B ~~~ \wedge ~~~ A \subseteq C ~ \right] $$ $$ A \subseteq \left(B \cup C \right) \hspace{0.6 cm} \nleftrightarrow \hspace{0.6 cm} \left[ ~ A \subseteq B ~~~ \vee ~~~ A \subseteq C ~ \right] $$ { } Demostración 10 $$ \left(B \cup C \right) \subseteq A \hspace{0.6 cm} \rightleftarrows \hspace{0.6 cm} \left[ ~ B \subseteq A ~~~ \wedge ~~~ C \subseteq A ~ \right] $$ $$ \left(B \cap C \right) \subseteq A \hspace{0.6 cm} \nleftrightarrow \hspace{0.6 cm} \left[ ~ B \subseteq A ~~~ \vee ~~~ C \subseteq A ~ \right] $$ { } Demostración 11 $$ A \subseteq B \hspace{0.6 cm} \longleftrightarrow \hspace{0.6 cm} \mathcal{P}(A) \subseteq \mathcal{P}(B) $$ $$ A \subseteq B \hspace{0.6 cm} \longleftrightarrow \hspace{0.6 cm} A \subseteq \mathcal{P}(B) $$ Diferencia de Conjuntos Un conjunto { } Demostración 1 $$ \left(A \setminus \emptyset \right) = 0 \hspace{0.6 cm} | \hspace{0.6 cm} \left( A \setminus A \right) = \emptyset = \left( \emptyset \setminus A \right)$$ Dos conjuntos { } Demostración 2 $$ \left( A \setminus B \right) \subseteq A $$ { } Demostración 3 $$ A \subseteq B \hspace{0.6 cm} \longleftrightarrow \hspace{0.6 cm} A \setminus B = \emptyset $$ { } Demostración 4 $$ \left( A \setminus B \right) = A \hspace{0.6 cm} \longleftrightarrow \hspace{0.6 cm} A \cap B = \emptyset $$ { } Demostración 5 $$ \left( A \cap B \right) \setminus A = \emptyset \hspace{0.6 cm} | \hspace{0.6 cm} \left( A \cap B \right) \setminus B = \emptyset $$ { } Demostración 6 $$ A \setminus B = \left( A \cup B \right) \setminus B = A \setminus \left( A \cap B \right)$$ { } Demostración 7 $$ \left( A \setminus B \right) \cup A = A ~~~ \wedge ~~~ \left( A \setminus B \right) \cup B = A \cup B \hspace{0.6 cm} | \hspace{0.6 cm} \left( A \setminus B \right) \cap A = \left( A \setminus B \right) ~~~ \wedge ~~~ \left( A \setminus B \right) \cap B = \emptyset $$ Tres conjuntos { } Demostración 8 $$ A \setminus \left( B \cup C \right) = \left( A \setminus B \right) \cap \left( A \setminus C \right) \hspace{0.6 cm} | \hspace{0.6 cm} A \setminus \left( B \cap C \right) = \left( A \setminus B \right) \cup \left( A \setminus C \right) $$ { } Demostración 9 $$ \left( A \cup B \right) \setminus C = \left( A \setminus C \right) \cup \left( B \setminus C \right) \hspace{0.6 cm} | \hspace{0.6 cm} \left( A \cap B \right) \setminus C = \left( A \setminus C \right) \cap \left( B \setminus C \right) $$ { } Demostración 10 $$ A \setminus \left ( B \setminus C \right) = \left( A \setminus B \right) \cup \left( A \cap C \right) $$ { } Demostración 11 $$ \left( A \setminus B \right) \setminus C = \left( A \setminus C \right) \setminus \left( B \setminus C \right) $$ { } Demostración 12 $$ A \cup \left( B \setminus C \right) = \left( A \cup B \right) \setminus \left( C \setminus A \right)$$ { } Demostración 13 $$ A \cap \left( B \setminus C \right) = \left( A \setminus C \right) \setminus \left( A \setminus B \right) $$ Producto Cartesiano de Conjuntos { } Demostración 1 $$ A \times B ~ = ~ C \times D \hspace{0.6 cm} \longleftrightarrow \hspace{0.6 cm} \left[ A = C ~~~ \wedge ~~~ B = D \right] $$ { } Demostración 2 $$ A \times \emptyset ~ = ~ \emptyset ~ = ~ \emptyset \times A $$ { } Demostración 3 $$ A \times B ~ = ~ \emptyset \hspace{0.6 cm} \longleftrightarrow \hspace{0.6 cm} \left[ A = \emptyset ~~~ \vee ~~~ B = \emptyset \right] $$ { } Demostración 4 $$ A \times B ~ = ~ B \times A \hspace{0.6 cm} \longleftrightarrow \hspace{0.6 cm} A = B $$ { } Demostración 5 $$ A \subseteq \left( A \times A \right) \hspace{0.6 cm} \longrightarrow \hspace{0.6 cm} A = \emptyset $$ { } Demostración 6 $$ A \times \left(B \cup C\right) = \left( A \times B \right) \cup \left( A \times C \right) \hspace{0.6 cm} | \hspace{0.6 cm} A \times \left(B \cap C\right) = \left( A \times B \right) \cap \left( A \times C \right) $$ { } Demostración 7 $$ \left( A \cup B \right) \times C = \left( A \times C \right) \cup \left( B \times C \right) \hspace{0.6 cm} | \hspace{0.6 cm} \left( A \cap B \right) \times C = \left( A \times C \right) \cap \left( B \times C \right) $$ { } Demostración 8 $$ \left( A \times C \right) \cup \left( B \times D \right) \subseteq \left( A \cup B \right) \times \left( C \cup D \right) \hspace{0.6 cm} | \hspace{0.6 cm} \left( A \times C \right) \cap \left( B \times D \right) = \left( A \cap B \right) \times \left( C \cap D \right) $$ { } Demostración 9 $$ A \times \left( B \setminus C \right) = \left( A \times B \right) \setminus \left( A \times C \right) \hspace{0.6 cm} | \hspace{0.6 cm} \left( A \setminus B \right) \times C = \left( A \times C \right) \setminus \left( B \times C \right)$$ { } Demostración 10 $$ \left( A \times B \right) \cap \left( B \times A \right) = \left( A \cap B \right) \times \left( A \cap B \right) $$ Diferencia Simétrica de Conjuntos { } Demostración 1 $$ \left( A \setminus B \right) \cup \left( B \setminus A \right) = \left( A \cup B \right) \setminus \left( A \cap B \right)$$ { } Demostración 2 $$ A \cap \left( B \bigtriangleup C \right) = \left( A \cap B \right) \bigtriangleup \left( A \cap C \right)$$ { } Demostración 3 $$ A \times \left( B \bigtriangleup C \right) = \left( A \times B \right) \bigtriangleup \left( A \times C \right) $$ { } Demostración 4 $$ A \bigtriangleup B ~ = ~ \emptyset \hspace{0.6 cm} \longleftrightarrow \hspace{0.6 cm} A = B $$ { } Demostración 5 $$ A \bigtriangleup B ~ = ~ \emptyset \hspace{0.6 cm} \longleftrightarrow \hspace{0.6 cm} \left[ A = \emptyset ~~~ \wedge ~~~ B= \emptyset \right] $$
0 Comentarios:
Publicar un comentario