Teorema del Sándwich Teorema del Sándwich ∞ Límite 1 $$ \lim_{x ~ \to ~ 0} ~ x \sin{\left(\frac{1}{x}\right)} ~~~~ , ~~~~ \lim_{x ~ \to ~ 0} ~ x \cos{\left(\frac{1}{x}\right)}$$ ∞ Límite 2 $$ \lim_{x ~ \to ~ 0} ~ x^2 \sin{\left(\frac{1}{x}\right)} ~~~~ , ~~~~ \lim_{x ~ \to ~ 0} ~ x^2 \cos{\left(\frac{1}{x}\right)}$$ ∞ Límite 3 $$ \lim_{x ~ \to ~ 0} ~ x^4 \sin{\left(\frac{2}{x}\right)} ~~~~ , ~~~~ \lim_{x ~ \to ~ 0} ~ x^4 \cos{\left(\frac{2}{x}\right)}$$ ∞ Límite 4 $$ \lim_{x ~ \to ~ 0^+} ~ \sqrt{x} \sin^2{\left({\frac{\pi}{x}}\right)} ~~~~ , ~~~~ \lim_{x ~ \to ~ 0^+} ~ \sqrt{x} \cos^2{\left({\frac{\pi}{x}}\right)}$$ ∞ Límite 5 $$ \lim_{x ~ \to ~ 0^+} ~ \sqrt{x} e^{\sin{\left({\frac{\pi}{x}}\right)}} ~~~~ , ~~~~ \lim_{x ~ \to ~ 0^+} ~ \sqrt{x} e^{\cos{\left({\frac{\pi}{x}}\right)}}$$
0 Comentarios:
Publicar un comentario